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Accomplishments/New Findings: 
 

• Efficient quantum chemical methods were developed to accurately predict the 
piezoelectric response of organic hydrogen-bonded crystals and single-molecule 
electromechanical response. Using the known piezoelectric response of crystalline  
2-methyl-4-nitroaniline, computational predictions were within 10% of experiment. 
Moreover, predictions suggested that in multi-layer films, the parallel alignment of 
molecular dipole moments strongly increases the piezo-response. 

• We determined that ubiquitous polar hydrogen bonds are piezoelectric. Studying 
conventional organic piezoelectric crystals and polymers (e.g., polyvinylidene difluoride, 
PVDF) revealed a theoretical maximum for the piezoelectric response in such materials 
(d33 ~45 pC/N). 

• Large piezoelectric response were computed for conjugated “molecular spring” 
compounds, including substituted [6]helicenes, with predicted charge and current ~2-3x 
greater than conventional ZnO or PVDF materials (i.e., d33 50-60 pC/N) and exceeding 
the theoretical maximum in hydrogen-bonded crystals. 

• Computational studies of related molecular springs predict charge and current ~4-5x 
greater than ZnO or PVDF materials (i.e., ~100 pC/N) by nitrogen substitution and 
increased dipole moments. The fundamental properties required for immense molecular 
piezoelectric response include large dipole moment, large polarizability, and low force 
constant vibrational breathing modes. 

• Using computational exploration of the electromechanical response other molecular 
scaffolds, we explored single-molecule ferroelectrics based on bowl-shaped aromatic 
hydrocarbons with stable hysteresis effects, controllable barriers to interconversion, and 
extremely high piezoelectric response (>400 pC/N) on par with champion perovskite 
ceramics such as lead zirconium titanate (PZT). By modulating the functionalization and 
the bowl curvature/depth, both the ferroelectric interconversion barrier and piezoelectric 
response can be modulated. 

• The piezoelectric response of single molecular monolayers was measured using piezo-
force atomic force microscopy (PFM). Using patterning and statistical techniques, we 
determined that helical oligoalanine peptides showed conformational changes in response 
to an applied electric field, far greater than control molecules. This technique is now a 
reliable screening method for new molecular piezoelectric materials. 

• Inherently flexible organic piezoelectric films were fabricated using polyurethane foams 
doped with varying concentrations of 2-chloro-4-nitroaniline. After poling with an 
applied electric field, the polymer foams yielded immense d33 response exceeding 250 
pC/N, over ten times the generated charge of comparable ZnO and PVDF materials. 
Increasing the dipole moment of the dopant, the concentration of dopant, poling field, and 
decreasing the elastic modulus of the polymer all increase the piezoelectric response.  
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Summary: 

We have designed organic molecular piezoelectric materials with dramatically increased 
response and energy generation properties compared to conventional ZnO and polyvinylidene 
difluoride (PVDF). Dramatic advances in organic electronic materials with promise for 
lightweight, flexible devices and applications from touch sensors to medical implants have not 
been matched with solutions for energy storage, conversion and generation. The promise of 
organic piezoelectric materials is the ability to design and optimize properties including 
piezoresponse, elastic modulus, electrical properties, and processability. 

We established that this new category of molecular organic piezoelectrics yields tremendous 
breakthroughs in response, with over ten times the charge generation of ZnO and PVDF using 
both experiments on single-molecule monolayers and thin-film materials and computational 
exploration. The combined research found targets for future synthesis and developed accurate 
nanoscale characterization techniques. 

In collaboration with Prof. Daniel Lambrecht at the University of Pittsburgh, we designed 
highly accurate computational methods to predict the piezoelectric response of organic crystals 
and “molecular springs.” Importantly, we find that ubiquitous hydrogen bonds can be 
significantly piezoelectric. 

Moreover, we uncovered a theoretical maximum to the piezo-response in PVDF and similar 
crystals that limited previous efforts to match the properties of inorganic materials. Instead, we 
designed molecular springs based on helical conjugated molecules with predicted piezo-response 
and generated charge ~2-3 times greater than ZnO and PVDF. Further computational exploration 
has led to understanding the fundamental properties required to exceed even champion 
perovskite ceramics. We found conformational distortions that lead to single-molecule 
ferroelectrics with controllable interconversion barriers and immense piezoelectric response. 

Building on these computational efforts, we experimentally determined the piezoelectric 
response of single molecular monolayers of short oligopeptides. Our method uses piezo-force 
microscopy (PFM) to characterize patterned monolayers, and establishes the response derives 
from the conformational change of the peptide helix. The results suggest that many proteins are 
piezoelectric, with continuous linear distortion in response to an electric field, strikingly different 
from conventional “switches” in light- or redox-driven molecular motors. 

Highlighting the inherent flexibility of organic materials, we used a commercial polyurethane 
foam matrix and doped with the polar 2-chloro-4-nitroanline molecule. Using a low elastic 
modulus open-cell foam and a high concentration of dopants, we poled the films to produce force 
sensors exceeding 250 pC/N, over ten times the generated charge of ZnO and PVDF. Measured 
electrical current density exceeds 0.4 mA/m2 in a 1.0 cm2 device. 

Based on the nearly infinite variety of organic molecules, materials based on these molecular 
design strategies have already exceeded conventional energy harvesting piezoelectrics. The 
fundamental theoretical limit for piezoelectric response in organic molecular materials far 
exceeds champion ceramics due to the lower dielectric constant and elastic modulus. Moreover, 
the use of inherently polar self-assembled multi-layers allows facile patterning and increased 
stability compared to ceramics. To further improve on these groundbreaking efforts, synthetic 
targets will need to possess large molecular dipole moments, large polarizability, low elastic 
modulus, and small vibrational force constants. Several such targets have been identified for 
future research. 
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Efficient, Accurate Quantum Chemical Prediction of Organic Piezoelectric Response 
 

We speculated that the piezoelectric response in PVDF polymers and other 
organic solids with polar order derives from deformations among 
intermolecular hydrogen bonds (Fig. 1). H-bonds are weak polarizable 
electrostatic interactions and consequently should deform easily in an applied 
field. We tested this hypothesis with a collaborator, Daniel Lambrecht (Pitt), 
using computational predictions of the geometric distortion under an applied 
electric field. Using approximate MP2 quantum chemical methods on 
molecular clusters of 2-methyl-nitroaniline (MNA) (Fig. 2) we found 
outstanding agreement between computed piezoresponse and experiment1 
(determined by x-ray analysis).2 Our results indicate that polar 
hydrogen bonds, ubiquitous across chemistry and biology, are 
often piezoelectric and can deform significantly in the presence 
of nanoscale electric fields.  

A further collaborative effort led to a signficant speed increase 
in calculating piezoelectric response. Investigating a set of 
hydrogen-bonding molecules suggests a fundamental limit to the 
piezoelectric response of H-bonds3 that arises from a tradeoff 
between the electrostatic polarizability and the strength of the 
interaction. Weak H-bonds are easy to deform, but tend to have 
small partial charges and polarize little in response to an electric 
field. Strong H-bonds tend to have large partial charges and 
polarize significantly in response to an electric field, but in turn 
have high force constants and are difficult to distort. Our results 
suggest that while some hydrogen-bonding solids (including 
MNA and PVDF) are known to be piezoelectric, a theoretical 
maximum of ~50 pm/V exists. This previously-unknown limit has clearly prevented previous 
efforts to create piezoelectric organic solids and polymers. 

 
Computational Exploration of Conjugated Molecular Springs 

 
While hydrogen-bonded solids are limited in their piezoelectric 

response, we can design molecular springs with low force constant 
vibrational breathing modes. We explored the computed piezoelectric 
response of π-conjugated helical molecules using density functional 
theory (DFT) calculations. Notably the [6]helicenes seen in Fig. 3, 
undergo remarkable deformation under an applied electric field. The 
deformation is driven by conformational changes, rather than direct 
stretching of the covalent bond framework.4 At fields of 1 V/nm, covalent 
carbon single bonds are predicted to distort less than 0.05 Å, or ~0.4% of 
the bond length. In contrast, these molecules exhibit a ~10-12% change 
in distance along the deformation direction. Importantly, while such 
fields are large in macroscopic terms, they are still small on an atomistic scale, corresponding to 
+/- 0.002 atomic units, or the field due to only a single positive or negative charge, ~1 nm from 
the molecule. 

 
 

Fig 1. PVDF 

Fig. 2. Molecular structure of 2-
methyl-4-nitroaniline, a known 
organic crystalline piezoelectric, 
illustrating the hydrogen-bond 
interaction in the solid. 

Fig. 3 [6]Helicene 
piezoelectric molecular 

spring  
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Predicted piezoelectric coefficients (d33) from our initial 
study range as high as 46-60 pC/N (= pm/V), far beyond 
ZnO, PVDF and other existing organic materials (10-30 
pC/N), as indicated in Table 1.27,62,63 We have already 
computed the piezoresponse with a variety of possible 
synthetic modifications, such as functional groups, helical 
scaffold, and regiochemical substitution, to the basic 
helicene. Thus we can directly correlate changes in 
molecular structure with improved piezoresponse. For 
example, steric repulsion of substituents in certain positions decreases the overall deformation. 
Also, one might naïvely expect that the molecular dipole moment would be the most important 
predictor of the piezoelectric coefficient, since it governs the interaction energy between the 
molecule and the applied electric field. Instead, we find the polarizability (and thus the induced 
dipole moment) correlates better.4 

Beyond these first-generation molecular springs, we explored 
the systematic substitution of nitrogen, oxygen, and sulfur 
heteroatoms in the helicene backbone. In particular, the use of 
nitrogen susbtitution in key positions dramatically increases the 
predicted piezorespone from 48 pC/N to 105 pC/N (Fig. 4). Use 
of 5-membered thiophene, pyrrole, or furan rings along the 
backbone significantly distort the helical shape and do not allow 
favorable alignment of the donor (amine) and acceptor (nitro) 
groups. Adding additional donor and acceptor groups also leads 
to increased computed piezoelectric coefficients, proportional to 
the increase in molecular dipole moment. 

In short, the computational exploration of molecular spring 
motifs incdicates clear structure/property correlations with the 
molecular dipole moment, polarizability, and vibrational force constants. The key figure of merit, 
the d33 piezoresponse can be understood by unit analysis: 
𝑑!!  (pC/N)   ≡    (pm/V)   =   

(%  !"#$%&'()$*)
(!""#$%&  !"#$%)

       (1) 
That is, 500 pC/N = 500 pm/V, or a 50% change in length at an applied field of 1.0 V/nm. For 
example, a molecule exhibiting a change in length from 4Å to 6Å under an applied field of 1.0 
V/nm, or a smaller molecule lengthening from 2Å to 3Å would both yield d33 = 500 pC/N, far 
beyond ZnO or PVDF. Consequently, we believe the fundamental limit to molecular 
piezoelectric response to exceed 1000 pC/N, over 40x greater charge generation. 

 
Computational Discovery of Single-Molecule Ferroelectric Response 
 

The key design principal in this project is that many polar molecules change geometric 
conformation in response to an applied electric field. Consequently, beyond helical molecules, 
we explored other molecular shapes, including π-conjugated “bowls.” In such systems, not only 
is the molecule piezoelectric, but also ferroelectric. The polarization inversion relies on the 
conformational change, unlike traditional counterparts in which ferroelectricity originates from 
the switch of an asymmetrical polar unit cell in inorganic crystals, mobile hydrogens or ions in 
organic crystals, or from the polar polymer chain rotation of ferroelectric polymers. 

Table 1. Approximate figures of merit for 
select piezo materials.  

Material 
Piezo 

Coefficient 
(d33 in pC/N) 

Pb(Zr,Ti)O3 - PZT ~250-500 

ZnO ~20-30 

Poly(CH2CF2) - PVDF ~10-20 

Helicenes ~40-60 (predict) 
 

Fig. 4 Substituted azahelicene 
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As indicated in Fig. 5, an applied electric field 
couples to the molecular dipole moment and induced 
dipole, adding sufficient potential energy to the system 
to interconvert the buckybowl between “up” and 
“down” states. We find the inversion barrier, given by 
the completely planar aromatic system varies with the 
fourth power of the bowl depth, and between ~1-100 
kJ/mol. Control over the curvature of the hydrocarbon 
and substitution of multiple polar substituents 
modulates the barrier. Moreover, since the bowl depths 
are ~1 Å, such an geometric inversion can lead to an 
incredibly large piezo-response given by Equation 1. 

For example, the compound with lowest inversion 
barrier (Fig. 6), a substituted perylene is also predicted to yield a 
piezoelectric response of 450 pC/N. While the tetra-nitro analogue 
is likely unstable, multiple analogues are computed to yield 
similarly large piezoelectric response. Since the quantum 
calculations are performed at zero temperature, thermal corrections 
and the zero-point vibrational energy decrease the inversion barrier 
significantly. Consequently several targets are attractive for future 
synthetic investigation. The study also demonstrates that beyond 
molecular springs and bowl shapes, new scaffolds for 
conformationally-driven piezoelectric response are likely, with 
unique properties. 
 
Experimental Characterization of Single Molecular 
Monolayer Piezoelectrics 
 

Our molecular piezoelectrics operate on the concept that the 
geometry and conformation of polar molecules changes under an 
applied electric field. As a proof of principle of our molecular 
piezoelectrics, we recently measured the piezoelectric response of 
single monolayers (~1 nm) of oligopeptide films for the first 
time.5 We used simple solution-based microcontact printing 
techniques to deposit and pattern intrinsically polar self-
assembled monolayers (SAMs) on smooth template-stripped gold 
films through the cysteine thiol-gold interaction. Using 
established piezo-force AFM (PFM) techniques6-9 to image both 
the topography (height) of our films, and the piezoresponse, we 
observed significantly greater piezo-response for the patterned 
peptide SAM (CA6) compared to dodecanethiol (DT) using the 
bare gold regions as a built-in baseline (Fig. 7).  

Since the measurements are performed in ambient conditions, 
some fraction of the carboxylate end groups of the CA6 peptides 
will be anionic. Consequently, we tested films with a built-in 
control, namely a mercaptoundecanoic acid (MUA), an alkane 

Fig 5. Computed response of single-molecule 
ferroelectric substituted sumanene. 

Fig 6. Substitued perylene with 
low bowl inversion barrier and 

large piezoresponse. 

Stamp Stamp

Gold Gold

10 μm
10

 μ
m

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

nm

Fig. 7. Patterned self-assembled 
monolayers of oligopeptide (CA6) 
and dodecanethiol (DT), showing 
similar topography, but much 
greater piezo response from CA6. 
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with carboxylate end groups and comparable height and pKa to CA6. 
Patterned circles of CA6 were deposited onto template-stripped gold surfaces (Fig. 8a), 

followed by deposition of MUA over bare gold regions (Fig. 8c). Significantly increased 
piezoelectric response can be observed comparing the phase (Fig. 8e) and amplitude (Fig. 8g) of 
the CA6 compared to the neighboring MUA regions. Moreover, we deposited MUA patterns 
(Fig. 8b) and compared to the neutralized am-CA6 in which all carboxylic end groups are 
converted to the methyl amide substituent. Again, the peptide generates significantly greater 
piezo-response (Fig. 8h) even compared to the electrically charged MUA regions. 

 

 
Figure 8. AFM topography, single-frequency PFM phase and amplitude of patterned and mixed monolayers. AFM 
topography of oligopeptide CA6 SAM (A) and MUA SAM (B) on bare gold, AFM topography of the mixed SAMs 
CA6/MUA (C) and MUA/CA6-am (D), single-frequency PFM phase image of mixed CA6/MUA (E) MUA/CA6-am (F), 
and single-frequency PFM amplitude of a mixed CA6/MUA (G) and MUA/CA6-am (H) films with an applied bias of 3V. 

 
While the single-frequency PFM mode used to image the mixed films cannot yield reliable 

quantitative measurements, this technique clearly indicates that PFM deformation observed in 
CA6 and CA6-am patterns derives largely from molecular conformational changes and not from 
end-group effects. 

To further understand this significant result, we performed DFT calculations on the Cys-(Ala)6 
peptides in an α-helical conformation.5 Under an applied electric field of 1 V/nm, parallel to the 
molecular dipole moment, the optimized geometry lengthens by 3% (0.25Å), and 
correspondingly shrinks by 2% (0.20Å) in an anti-parallel field. We predict similar deformations 
via molecular dynamics, although protein force fields greatly overestimate the distortions (by 
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factors of ~50). Our results suggest that many proteins are piezoelectric, with continuous linear 
distortion in response to an electric field, strikingly different from conventional “switches” in 
light- or redox-driven molecular motors.10-27 

The measured piezoelectric coefficients of the oligopeptides are in good agreement with our 
computational predictions and other recent experiments measuring piezoresponse in larger-scale 
biological materials, including collagen, amyloid fibrils, and individual cells.28-31 The 
experimental value is naturally lower than that predicted computationally, partly because of the 
tilt angle of the molecules on the gold surface, the intrinsic disorder of the SAM, screening of the 
electric field by ambient water at the tip/surface interface, and inefficient mechanical coupling 
between the tip and SAM. 

Importantly, deposition and patterning of thiol self-assembled monolayers on gold surfaces is 
facile, creating in intrinsically polar film for PFM characterization. We have found the 
techniques, namely patterning against bare gold and inert alkanethiols that lead to accurate 
characterization of nanoscale (~1 nm) films of organic monolayers. This technique is amenable 
to rapid experimental screening of candidate piezoelectric materials. 
 
Highly Responsive Flexible Piezoelectric Films 
 

While impressive, the nanoscale response of SAM films will not generate significant energy 
for energy harvesting applications, nor practical devices. The direct piezoelectric effect is the 
change in surface charge due to an applied force. Because a polarization difference between two 
regions gives rise to a surface charge on their boundary, and polarization has units of charge per 
area, the piezoelectric charge per unit force can also be viewed as the change in polarization 
(dipole moment density) per unit stress, and so the piezocoefficient d can be rewritten as: 

𝑑 =    !"
!"
  =

! !
!

!"
= !! !

!
         (2) 

in short, the charge (Q) per unit force (F) is equivalent to the concentration of dipole moments µ 
per unit volume (V) divided by the bulk modulus K.  

Equation 2 indicates that by increasing the dipole moment, the fraction of polar molecules in a 
lattice, and decreasing the bulk modulus, we can obtain large piezoresponse. Previous work has 
occurred in nonlinear optical (NLO) materials, doping highly polar chromaphores in polymer 
matrices followed by poling the materials with high field.  We can estimate the response of such 
materials with Equation 2, e.g. a PMMA matrix (K=6.1 GPa) with a 1 M concentration of  a 
dopant with a molecular dipole moment of 10 D, the expected piezocoefficient is 3.3 pC/N in 
line with previous with reports of NLO materials with piezocoefficients up to 2.5 pC/N. Despite 
the high polarizations achieved in these materials, the response is low. 

Covalent self-assembled multilayers are known to significantly increase the concentration of 
polar molecules (i.e., essentially to unity).32-35 Alternatively, a more flexible material could be 
designed using a foam to achieve a bulk modulus orders of magnitude lower than other materials 
of similar composition. A foam structure also results in decreased polarization because of the 
reduced relative density, but this suggests an optimum balance can be found between foam 
density and piezoelectric response. 

We fabricated thin-film (5 mm) foams using commercial polyurethane precursors while 
incorporating different polar molecular dopants at varying aqueous concentrations. The highest 
solubility was found for 2-chloro-4-nitroaniline (CNA), but all molecules tested fell on a 
universal line correlating dipole moment concentration (i.e., Debye • molarity) with measured 
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piezoelectric response. Characterization was performed by quasi-static force loading, increasing 
the applied force and measuring electrical current at short-circuit conditions (Fig. 9). 

   
Fig. 9. (left) Schematic of open-cell flexible polyurethane foam doped with polar guest molecules under quasi-static 
force loading. (right) Increasing applied force generates increased generated charge, with the slope of the calibration 
line equal to the piezo coefficient (d33). 
 

We find no measureable piezoelectric properties in undoped 
polyurethane foams, unpoled films of doped polyurethane, or 
poled films of CNA (which crystallizes into a symmetric, non-
piezoelectric crystal structure). Importantly, the response 
increases with poling field (Fig. 10) indicating the fraction of 
poled CNA guest increases up to ~80 % with an applied field of 
40 V/cm, significantly lower than fields used to pole PVDF or 
perovskite ceramics. 

While the polar guest molecules are simply adsorbed into the 
polymer matrix, we find significant stability to the poled films 
with >80% piezoresponse persisting beyond 7 days. Further improvement should occur by 
covalent cross-linking between the polymer matrix and the guests or other strong guest-host 
interactions after poling. 

Importantly, these films, due to the low bulk modulus, are inherently flexible and generate 
immense piezoelectric response >250 pC/N over ten times the generated charge of comparable 
ZnO and PVDF materials. Measured short-circuit currents exceed 0.4 mA/m2 across a 1.0 cm2 
film. Since we compute the dipole moment of CNA to be only 7.69 D, the response should 
increase with more polar guests and higher loading concentrations, easily exceeding champion 
perovskite ceramics such as PZT even with non-piezoelectric molecules. The combination of 
piezo-active molecular units and self-assembled multi-layers should create a new realm of 
energy harvesting materials and nanoscale artificial muscles. 
 
References: 
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